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OPTIMAL CONTROL VND NON1.IN AR :ILTERING FOR

NONDEGENERAT" DI FFUS ION PROCESSES

by

Wendell Ii. Fleming and Saniov K. itter

Abstract

A linear parabolic partial differential equation describing the pathwise filter

for a nondegenerate diffusion is changed, by an exponential substitution, into

the dynamic programming equation of an optimal stochastic control problem. This

substitution is applied to obtain results about the rate of decay as ixj -

of solutions p(x,t) to the Pathwise filter equation, and for solutions of

the corresponding Zakai equation.

,~4.
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1. Introduction We consider an n-dimensional signal process x(t) =

(xl(t),---,Xn (t)) and a 1-dimensional observation process y(t), obeying

the stochastic differential equations

(1.1) dx = b[x(t)]dt + c[x(t)]dw

(1.2) dy = h[x(t)]dt + di, y(O) = 0,

with w, w independent standard brownian motions of respective dimensions

n, 1. (The extensions to vector-valued y(t) need only minor modifications.)

The Zakai equation for the unnormalized conditional density q(x,t) Is

(1.3) dq = A qdt + hqdy, t > 0,

where A is the generator of the Fignal process x(t) See [3] for

example. By formally substituting

(1.4) q(x,t) = exp [y(t)h(x)]p(x,t)

one gets instead of the stochastic partial differential equation (1.3) a

linear partial differential equation of the form

(1.5) Pt 2-tr a(x)pxx + gY(x,t). Px + VY(xt)p, t > 0,

with p(x,0) = p (x) the density of x(0). Here

a(x) = a(x)o(x)' , Px =( Pxl - )
nn

n

tr a(X)Px x = a ij (x)pxx

Explicit formulasfor gY, Vy are given in §6. Equation (1.5) is the

basic equation of the pathwise theory of nonlinear filtering. See [2] or

_ _ ,., ,' @ .. ,qt.W .. ,:. .. , ... ... "" ' .=_.1.,,: , • , ... ..
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[101. The superscript v indicates dependence on the observation trajectory

y = y(,). Of course, the solution p = py also depends on y

We shall impose in (1.1)the nondegeneracy condition that the n x n

matrix o(x) has a bounded inverse a (x). Other assumptions on b,

0a, h, p will be stated later. Certain unbounded functions h are

allowed in the observation equation (1.2). For example, h can be a

polynomial in x = (xi,---,xn) such that !h(x)l - as jxl

The connection between filtering and control is made by considering the

function S = -log p. This logarithmic transformation changes (1.5) into

a nonlinear partial differential equation for S(x,t), of the form (2.2)

below. We introduce a certain optimal stochastic control problem for

which (2.2) is the dynamic programming equation.

In §3 upper estimates for S(x,t) as jxl - are obtained, by

using an easy Verification Theorem and suitably chosen comparison controls.

Note that an upper estimate for S gives a lower estimate for p = -log S.

A lower estimate for S(x,t) as lx , - is obtained in §5 by another

method from a corresponding upper estimate for p(x,t). These results are

applied to the pathwise nonlinear filter equation in §6.

Related results have been obtained using other methods by Baras,

Blankenship, and Hopkins [11 and by Sussmann [12]. A connection between

control and nonlinear filtering was also made by Hijab [8], in a somewhat

different coAtext.

2. The logarithmic transformation. Let us consider a linear parabolic

partial differential equation of the form

1
(2.1) Pt = tra(x)pxx + g(x,t).Px + V(x,t)p, t > 0,

0
p(x,O) = p (x).

When g = gY, V = Vy  this becomes the pathwise filter equation (1.5), to

.. . . .. ....... . .. .. . ... . . L,. . ' ' -" - " . .. ."



which we return in §6. By solution p(x,t) to (2.1) we mean a

"classical" solution p E C2, i.e. with px., Px.x.' Pt continuous,

i, j =

If p is a positive solution to (2.1), then S = -log p satisfies

the nonlinear parabolic equation

(2.=2) St t ra(x)S + H(x,t,S), t > 0
2xx -

S(x,O) = s0 (x) = -log p (x),

H(x,t,S x ) = g(x,t). S - -5' a(x)S- V(xt)
x x 2 x x

Conversely, if S(x,t) is a solution to (2.2), then p = exp(-S) is a

solution to (2.1).

This logarithmic transformation is well known. For example, if

g = V = 0, then it changes the heat equation into Burgers' equation [9].

We consider 0 < t < tI , with t1  fixed but arbitrary. Let Q = Rn

x [O,t 1]. We say that a function with domain Q is of class - if

9 is continuous and, for every compact K E R n , (',t) satisfies a

uniform Lipschitz condition on K for 0 < t < tI . We say that (

satisfies a polynomial growth condition of degree r, and write 9 E r,

if there exists M such that

9(xt), < M(l+xIr), all (x,t) E Q.

Throughout this section and §3 the following assumptions are made.

Somewhat different assumptions are made in § 's 4,5 as needed. We assume:

-1 Rn
(2.3) a , a are bounded, Lipschitz functions or. R
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For some m > 1

(2.4) ~E Y n ?, V E n -)m 2m*

For somo I- > 0

(2.5) S0E C 2l.n

For someMl

(2.6) V(x't) < ,I S 0(x) > -Ml

We introduce the following stochastic control problem, for which

(2.2) is the dynamic programming equation. The process (t) being

controlled is n-dimensional and satisfies

(2.7) d u( (T),T)dT + G[ (T)1dw , 0 < -1 < t

Y(O) =x.

The control is feedback, Rnvalued:

(2.8) U(T) =U(MT),T).

Thus, the control u is just the drift coefficient in (2.7). We admit

amy u of class Y~f n~ Noeta _ I mle at most linear

growth of Iu(x,t)i as Ixl For every admissible u , equation

(2.7) has a pathwise unique solution such that E ! r< for everNy

r > 0. Here is the sup norm on [O,t].

Let

(2.9) L(x,t,u) -g~xt)a- (x)(u-6(x't)) -V(x,t
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For (x,t) E Q and u admissible, let

(2.10) J(x t,u) U , L[(),t- ,ut)]d I* dl+S (t)]

The polynomial growth conditions in (2.4), (2.5) imply finiteness of

J . The stochastic control problem is to find u01 minimizing J(x,t,u).

Under the above assumptions, we cannot claim that an admissible u

exists minimizing J(x,t,u). However, we recall from [7,Thm. VI 4.11 the

following result, which is a rather easy consequence of the Ito differential

rule.

Verification Theorem. Let S be a solution to (2.2) of class

C ,1n , with S(x,o) = s0(x). Thenr

(a) S(x,t) < J(x,t; u) for all admissible u

(b) If u0 p = g - aS is admissible, then S(x,t)
x

In 93 we use (a) to get upper estimates for S(x,t), by choosing

judiciously comparison controls. For uop  to be admissible, in the sense

we have defined admissibility, )S ! can grow at most linearly with 1xI

hence S(x,t) can grow at most quadratically. By enlarging the class of

admissible controls to include certain u with faster growth as !x! -

one could generalize (b). However, we shall not do so here, since only part

(a) will be used in §3 to get an estimate for S.

In §4 we consider the existence of a solution S with the polynomial

growth condition required in the Verification Theorem.

As in [6] we call a control problem with dynamics (2.7) a problem of



stochastic calculus of variations. The control u(,(r),T) is a kind

of "average" time-derivative of (T), replacing the nonexistent derivative

(t) which would appear in the corresponding calculus of variations

problem with J = 0.

Other control problems. There are other stochastic control problems

for which (2.2) is also the dN-namic programming equation. 01c choice,

which is appealing conceptually, is to require instead of (2.7)that (

satisfy

(2.11) d; = Tg(1) ,] + u[(,I dT + ]dw

with $(O) = x. We then take
1 1-

(2.12) L(x,t,u) = u'a- (x)u - V(x,t).

The feedback control u changes the drift in (2.11) from g to g + u.

When a = identity, L = ul' - V(x,t) corresponds to an action integral

in classical mechanics with time-dependent potential V(x,t).

3. Upper estimates for S(x,t). In this section we obtain the following

upper estimates for the growth of S(x,t) as !x! in terms of the

constants m > 1, e > 0 in (2.4), (2.5).

Theorem 3.1 Let S be a solution of (2.2) of class C f 2 N , with
r

S(x,O) = S(x). Then there exist positiv-e M1 , M, such that:

(i) For (x,t)E Q, S(x,t) < Ml(l- Ix! P ) with = max(m+l,f).

(ii) Let 0 < t0 < t I , m > I. For (x,t) E Rn ( Oltll

S(x,t) < M1(l+1 x!m+l)

. .. . .... I I IIT I II Ir " I! I I l- ,. ' I III III &A AIIAI I I



The constant ' depe'ds c t an M ,-can , n bot I,

t I In the hvpotheses of this theorenS, Sx .t .i s s n t: have

polynomial growth as !x! with some degree r. The theorem states

that r can be replaced bv P , or indeed by m+1 I rovided t > t, > .

Purely formal arguments suggest that m+l is best possible, and this is

confirmed by the lower estimate for S(xt) made in'

Proof of Theorem 3.1. We first consider m > 1. 3v (2.3-

and (2.9),

(3.1) L(x,t,u) < B (1+ 2m

01 !
s°(x) < B p1 xl )

for some B1 . Given x C Rn we choose the following open loop control

u(t), 0 < I < t. Let u(t) = (T), where the components 7 i[). satisfy

the differential equation

(3.2) fi = -(sgn xi)jli !r i = 1,---,n.

with n(O) = x. From (2.7)

;(T) = M[ + () 1 0 < -d < t,

rT

Since a is bounded, E for each r. By explicitly integrating
t

(3.2) we find, since m > 1, that

t)i 2md< 1L 1 m+1 1

Ef- l i + m+

Ef [ ('r) 12m  d'-: < 22 m  rtI cI2m(d L + E t ! (1.)1 di < \3(1+ xl )

0 '-0, ]0 3
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for some M3
2 2 2m

Sinceu. = = .
1 1 1

JO M+1

Since lr.(t) < !x,

El (t)lt < E(Ixl +T;(t)l) < (1 + jxI )

for some K From (2.10), (3.1) we get

J(x,t,u) < MI1(1+1x' ), max(m-1,

for some M . By part (a) of the Verification Theorem, S(x,t) < J(x,t,u),

which implies (i) when m > 1.

For t > t > 0, :](t)! is bounded by a constant not depending on
01

x = n(0). Since (t) = n(t) + ;(t), and Ex;(t !  is bounded, this

bounds E S0 [(t)] by a constant not depending on x . The estimates above

x

and part (a) of the Verification Theorem then give (ii).

It remais to prove (i) when m = 1. Consider the "trivial" control

u(tI = 0. When m = 1 , g grows at most linearly and V at most
2 < ~ +x2 ) frsm

quadratically as xl - . Moreover, E 1I1 2< K(l+1x2 ) for some K.

Using again (a) of the Verification Theorem, we get again (i) with P

max(2,fi). [When m = 1, this is a known result, obtained without using

stochastic control arguments.]

4. An existence theorem. In this section we give a stochastic control

proof of a theorem asserting that the dynamic programming equation (2.2) with



Ir
-9-

the initial data SO  has a solution S The argument is essentially

taken from [4, p. 222 and top p. 223.] Since (2.2) is equivalent to

0
the linear equation (2.1), with positive initial data p) , one could get

existence of S from other results which give existence of positive solutions

to (2.1), see [11] . However, the stochastic control proof gives a

polynomial growth condition on S used in the Verification Theorem (2).

Let 0 < u < 1. We say that a function with doma;n ' is of class

C if the following holds. For any compact 1 c Q, there exists M such

that (x,t), (x',t') E r imply

212

(4.1) 19D(x',t') - (x't) ! < .l l ' t a 2 ' ,

21 , t  are of class
We say that 9 is of class Ca if ;, . , , roca

1 1 1

Ca , i, j=l, --- , n.

In this section the following assumptions are made. The matrix 2(x)

is assumed constant. By a change of variables in Rn we may take

(4.2) = identity

For fixed t , g(.,t), V(.,t) are of class C on Rn , and

g' gx. I V, Vx. i 1,---,n, are of class Ca  for some a E (0,1].
I I

Moreover,

(4.3) lg(x,t)! < 1 + y2 !xj m, m

with Y small enough that (4.8) below holds. (If g Ef with P <

then we can take Y2  arbitrarily small.) We assume that

2m2

(4.4) a txi - a2 < -V(x,t) < A(l + x 2 m1
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for some positive a,, a,, A and that

(4.S) gx E :,Vx E "£

We assume that S0E C3 n 10 for some t > 0, and

(4.6) li S0 (x) = + 0

(4.7) s < C1 SO + C

for some positive C1 , C1

Example. Suppose that V(x,t) - -kV 0 (x) + V (x,t ) with V0 (x) a

positive, homogeneous polynomial of degree 2m, k 0, and V Cx,t) a

polynomial in x of degree <2m-l with coefficients ff1lder continuous

functions of t . Suppose that g(x,t) is a polynomial of degree

0< m-1 in x , with coefficients If6lder continuous in t , and S (x)

is a polynomial of degree £ satisfying (4.6). Then all of the above

assumptions hold.

From (2.9), (4.2), L lu V . If Y, in (4.3) is small

enough, then

2 2m - Ztum(4.8) l(u2 +xI - 2< L(x,t,u) < B(1 +Jul- +jx )

for suitable positive al' 2 B. Moreover,

Lx = -gx(u-g) - Vx

I 1 +2 g 2 1 2x u IX + I + IV

where IgxI denotes the operator norm of gx regarded as a linear trans-

formation on Rn . From (4.3), (4.5), (4.8)
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(4.9) IL x < C1L + C,

for some positive CI,C 2  (which we may take the same as in (4.7).)

Theorem 4.1 Let r = max (2m,f). Then equation (2.2) with initial

data S(x,0) = S 0(x) has a unique solution S(x,t) of class C7' n

such that S(x,t) - as xl - uniformly for 0 _ < t 1

Proof. We follow [4, 55]. For k = 1,2,---, let us impose the

constraint ul < k on the feedback controls admitted as drifts in (2.-

Let

(4.10) Sk(x,t) = min J(x,t; u)
u

291
Then Sk is a C. solution to the corresponding dynamic ,programming

equation

(4.11) (Sk) t = - A Sk + Hk(X,t,(Sk)),

Hk(x,t,(Sk)) min m L(x,t,u)+(Sk)Xu].
ju_<k

The initial data are again Sk(X,0) = S 0(x). The minimum in (4.10) is

attained by an admissible UkP See [7, p. 172].

Now S1 > S2 > ---; and Sk  is bounded below since L and SO are

bounded below by (4.6), (4.9). Let S = lim S . Let us show that (Sk)x
k-

is bounded independent of k uniformly for (x,t) in any compact set.

Once this is established standard arguments in the theory of parabolic partial

differential equations imply that S E (:2,1 and S satisfies (2.2). For

(Sk)x there is the probabilistic representation

'C --
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(4.12) (S )x(X,t) = Ex Lx[k(L),tt ,Uk(T)]d + S[(t)

op
where k is the solution to (2.7) with u =u k(0) = x, and

uk(1 ) = ukP(k(T)T)

This can be proved exactly as in [4, Lemma 3]. Another proof, based on

differentiating (4.10) with respect to x, i=l,--, n, is given in

[5, Lemma 5.3]. From (4.7), (4.9), (4.12)

I(Sk) (x,t)j < C1 E {f  L[ k(i), t-T , uk(T )]dT+ SO[r (t)]} + C(t+l),

or since OP is optimal

(4.13) !(S )x(X,t)l < C S (x,t) + C2(t+1)

kkSince Sk(X,t) is bounded uniformly on compact sets, (4.12) gives the

required bound for (Sk)x uniformly on compact sets.

For the "trivial" control 0, we have by (4.8) and SO E

J(x,t,0) < ( + Ex ) , r = max(2m, t)

for suitable B When u(I) H 0, U I, we have ,(T) = x + w(f).

For suitable M we have

Sk(x,t) < J(x,t,O) < M(1 + xl), k = 1,2,---.

Hence S(x,t) satisfies the same inequality. Since S is bounded below,

this implies S E.?
r

Let us show that S(x,t)4 as IxI -. o uniformly for 0 < t < t

Since Su(X,t) = J(x,t; uP), (4.8) implies

.. .. .x,- ,t ) .-J , - " -,. " .t.;-
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Sk(X,t) > x  [!U(1)> + ktt) u 2r]d- _ 2 t + ESC)
0

00
Given X > 0 there exists R such that lx > R1  implies S 0(x) > X

by (4.6). Let R2 > R and consider the events

I 1 = ]Ik - xl It < - Rl:

1

I {tw K >- (R2 - R1 )}

with fl 1t  the sup norm on [0,t]. Since

k ( -) x = Vk(t) + w(t), 0 < T < t

c I
A 1 cA 2 U A 3. For R2 - R 1  large enough, P(A3) < and hence

P(A 1 ) + P(A2) :> . From Cauchy-Schwar:

1 (R- R1 ) 2P(A2) tE Jk) 2 d"

Le 2x >R On A 0 -2lu(U
Let IxI >R 2  On Alp j k(t) j > and hence S [k(t)] > A . For

Sk(xt) > t (R2 - R ) 2 P(%2) + XP(A) (st +

0 nwith a lower boun! for S (x) on R . Since the right side does not

depend on k , S satisfies the same inequality. This implies that

S(x,t) -) as Ix uniformly for 0 < t < t
I ~- -lI

To obtain uniqueness, p = exp(-S) is a C2'1 solution of (2.1), with

p(x,t) - 0 as lxl - uniformly for 0 < t < t 1 Since V(x,t) is bounded
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above, the maximum principle for linear parabolic equations implies that

p(x,t) is unique among solutions to (2.1) with these properties, and

with initial data p(x,0) = r0(X) = exp [-S 0(x)]. Hence, S is also

unique, proving theorem 4.1.

It would be interesting to remove the restriction that C = constant

made in this section.

5. A lower estimate for S(x,t) To complement the upper estimates

in Theorem 3.1, let us give conditions under which S(x,t) - w as

jx[ at least as fast as m n > 1. This is done by establishing

a corresponding exponential rate of decay to 0 for p(x,t). In this

C2

section we make the following assumptions. We takec C C with

-l
(5.17p CF U x. bounded, Gx x  E r i, j~l, ---,n.

1 x.x. r13

for some r > 0. For each t , g(.,t) E C2 . Moreover,

(5.2) g E F , < m, g C g
x r ' xx. r

2
and g, gx gx x are continuous on Q. For each t , V(,,t) E C

Moreover, V satisfies (4.4),

(5.5) V E -6, V E -4,x. r x ix. r

0 23

and V, V V are continuous on Q . We assume that P0 E C 2

d ti3

and that there exist positive 6 , M such that

. . . . . . ... . . . . t l I l Idf"-



(5.4) exr Ix 1m+ * (x + , *,0 (x)' + ' 0  rx)I] < %
.x. x x.L

Theorem 5.1. Let p(x,t) be a C' 1 solution to (2.1) such that

p(x,t) - 0 as 1xi - - , uniformly for 0 < t < t I Then there exists

' > 0 such that exp[61xlm+l]p(x,t) is bounded on Q

Proof. Let
m+l

",(x) 2 (+xr 2) 2 , (x,t) = exp [6(x)]p(x,t),

Then 7 is a solution to

(5.5) Rt = -tr a7T + g7 V7T,
2 xx x

g = g - 6aV,

V-= V - 6g " '4 + ( 2 -'tr aY)x 2 x

By" [11, Theorem l!1, equation (5.5) with initial data

TrO = exp(4 )p0 has for small enough 6> 0 the probabilistic solution

- { 0[ It 1 -
(5.6) IT(x,t) = E{f (t)]exp U [-lgdw - G_1-gjdT + Vd

where X(t) satisfies

(5.7) dX = O[X(T)]dw, T > 0,

with X(0) = x. In the integrands c g and T are evaluated at (X(r),t).

The proof in [11] that satisfies (5.5) is done by approximating g,V by

functions gn V for which the corresponding 1 tend to 7 boundedlv

and pointwise. By standard estimates for partial derivatives to solutions
2,12

of linear parabolic partial differential equations, is C and

satisfies (5.5). I
Then p = exp(-(*)# is a C2' solution to (2.1), with initial

0
data p , and with p(x,t) tending to 0 as jxI uniformly for

-- '-MI
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0 < t < t1  By the maximum principle, p p which implies that

exp [6jx m+l]p is bounded on Q . This proves Theorem 5.1.

Since S = -log p, we get by taking logarithms:

Corollary. For some positive 6 , 61

(s.8) S(x,t) > 6! xm+ 1

6. Connection with the pathwise filter equation. The generator A of the

signal process in (1.1) satisfies for E C2

1

P4 = -tr a(x)x + b(x)o xxx

The pathwise filter equation (1.5) for p = pY is

(6.1) Pt (Ay) pp + U p  where

Ayq - y(t)a(x)h x(x) • x

-2 -1 2
V (x,t) = h(x) - y(t)Ah(x) + 7 y(t) h (x)'a(x)h (x).

Hence, in (1.5) we should take

n 3a..
(6.2) gY = -b + y(t)ah + Y, Y = 1 = ,---,n,

n a
S2 a..

(6.3) Vy = Vy - div(b - y(t)ah x) + ax ax.

To satisfy the various assumptions about g = gY, V = Vy  made

above, suitable conditions on a, b, and h must be imposed. To obtain

the local Ht6lder conditions needed in S4 we assume that y(°) is Ht6lder
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continuous on [O,t]. This is no real restriction, since almost all

observation trajectories y(-) are If6lder continuous.

To avoid unduly complicating the exposition let us consider only

the following special case. We take c = identity, an assumption already

made for the existence theorem in S4. We assume that b E C3 with

b, b bounded, and all second, third order partial derivatives of b
x

of class 9 r for some r. Let h be a polynomial of degree m and S0

r

o00
a polynomial of degree £ , such that h = h 1 + h,, = S8 + S where

0

hl, S are homogeneous polynomials of degrees ni,,
1'

(6.4) -Ih,(x) 1= , lirS O(x) :
!.

h, is of degree <m and S, of degree <2.

Then all of the hypotheses in §'s 2-4 hold. In (6.2), gY has

polynomial growth of degree m-1 as Ix1 - , while in (6.3)

Vy  is the sum of the degree 2m polynomial - 1h2(x) and terms with

polynomial growth of degree < 2m.

Let Sy = -log py . From Theorem 3.1 we get the upper bounds

(i) SY(x,t) < M I(I+Ix!P), 0 < t < t ' max(m+l,£)

(ii) SY(xt) < M2(l+Ixlm+l), 0 < t < t < t I  M > 1

0 0 (-4)

where M, M2 depend on y . For pO = exp(-S ) to satisfy (5.4)

we need I > m+l The Corollary to Theorem 5.1 then gives the lower

bound
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(6.b) S(xt) _ !m l - 0 < t < t

From (6. 5) fi iU and !'.b) we Kee that s ,rx,t) increases to + like

+1 at least for I N and t bounded away from ), and for

0 < t < t,, in case L -m+l

Finally, q = exp(y(t)h)p is a solution to the akai equation. For 4

any 9 E Cb (i.e., 9 continuous and bounded on Rn) let
b4

A t() = r 9(x)q(x,t)dx

A (9) = E q[x(t)]exp (h[x(t)]dy - -- hx(Z)]-d:) '(y ,

J 2

where E denotes expectation with respect to the probability measure P

obtained by eliminating the drif-t term in (1.2) by a Girsanov transformation.

The measure At  is the unnormalized conditional distribu-:ion of x(t)t~t

0
Then At  is also a (weak) solution of thc Takai cquation, with EA (1) 1.

By a result of Sheu [11, Thin. 4], At = At

t1
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